Object Detection Model Overview
Object detection models identify and locate objects within images or videos by assigning them specific bounding boxes. Applicable Metrics: Accuracy, Euclidian Distance (embeddings) Click here for all valid model types and metric combinations.Object Detection Code Example
- Python Batch
Example Row
For more details on Python Batch API Reference, visit here:See here for more information on embeddings and options for generating them.
| image_vector | image_link | prediction_bboxes | actual_bboxes | prediction_categories | actual_categories | actual_super_categories | prediction_scores | Timestamp |
|---|---|---|---|---|---|---|---|---|
[0.24713118374347687, 0.7061651349067688, 1.12... | ```javascript | |||||||
| ”https://link-to-my-image.png” | ||||||||
| ``` | [[50.43, 109.49, 538.21... | [[55.39, 107.72, 539.25, 362.9], [554.41, 194.... | [bus] | [bus, person, person] | [vehicle, person, person] | [0.9997552] | ``` | |
| 1618590882 |
Google Colaboratory
Object Detection Prediction & Actual Values
Arize supports logging object detection prediction and actual values using theObjectDetectionColumnNames object, which can be assigned to the prediction/actual schema parameters, object_detection_prediction_column_names and object_detection_actual_column_names.Object prediction or actual declaration is required to use the object detection model type in Arize.Embedding Features
In addition to object detection prediction and actual values, Arize supports logging the embedding features associated with the images in an object detection model using theEmbeddingColumnNames object.-
The
vector_column_nameshould be the name of the column where the embedding vectors are stored. The embedding vector is the dense vector representation of the unstructured input. ⚠️ Note: embedding features are not sparse vectors. -
The
link_to_data_column_nameshould be the name of the column where the URL links to the source images are stored.