Skip to main contentOverview
Arize supports three main computer vision model types, each with specific metrics tailored to their unique characteristics:
- Object Detection - Detecting and localizing objects in images
- Image Classification - Classifying images into categories
- Image Segmentation - Pixel-level classification (Semantic and Instance Segmentation)
Object Detection Metrics
Object Detection models in Arize are designed to detect and localize multiple objects within images using bounding boxes.
Supported Metrics
Primary Metric
- Accuracy - Multi-value accuracy metric that compares predicted bounding box labels with actual bounding box labels
Data Requirements
Object Detection models require the following data fields:
Prediction Data:
prediction_object_detection_label - List of predicted object labels
prediction_object_detection_score - Confidence scores for each prediction
prediction_object_detection_coordinates - Bounding box coordinates
Actual Data:
actual_object_detection_label - List of ground truth object labels
actual_object_detection_coordinates - Ground truth bounding box coordinates
Image Classification Metrics
Image Classification models classify entire images into predefined categories. These models support comprehensive multi-class classification metrics.
Supported Metrics
Core Classification Metrics
- Accuracy - Overall classification accuracy
- Precision - Per-class and averaged precision metrics
- Recall - Per-class and averaged recall metrics
- F1 Score - Harmonic mean of precision and recall
- Sensitivity - True positive rate
- Specificity - True negative rate
- False Positive Rate - Rate of incorrect positive predictions
- False Negative Rate - Rate of incorrect negative predictions
- False Negative Density - Density of missed predictions
Multi-Class Specific Metrics
- Multi-Class Precision - Precision calculated per class (requires positive class specification)
- Multi-Class Recall - Recall calculated per class (requires positive class specification)
- Micro-Averaged Precision - Precision averaged across all classes
- Macro-Averaged Precision - Precision averaged across all classes with equal weight
- Micro-Averaged Recall - Recall averaged across all classes
- Macro-Averaged Recall - Recall averaged across all classes with equal weight
Additional Metrics
- AUC - Area Under the ROC Curve
- PR-AUC - Area Under the Precision-Recall Curve
- Log Loss - Cross-entropy loss for probabilistic predictions
- Calibration - Model calibration quality
- Cardinality - Number of unique classes
Data Requirements
Prediction Data:
prediction_labels - Predicted class labels
prediction_scores - Confidence scores (optional)
Actual Data:
actual_labels - Ground truth class labels
Image Segmentation Metrics
Arize supports two types of image segmentation: Semantic Segmentation and Instance Segmentation.
Semantic Segmentation
Semantic segmentation assigns a class label to every pixel in an image.
Supported Metrics
- Accuracy - Multi-value accuracy metric comparing predicted vs actual polygon labels
Data Requirements
Prediction Data:
prediction_semantic_segmentation_polygon_labels - Predicted segmentation labels
prediction_semantic_segmentation_polygon_coordinates - Polygon coordinates
Actual Data:
actual_semantic_segmentation_polygon_labels - Ground truth segmentation labels
actual_semantic_segmentation_polygon_coordinates - Ground truth polygon coordinates
Instance Segmentation
Instance segmentation identifies and segments individual object instances, combining object detection with segmentation.
Supported Metrics
- Accuracy - Multi-value accuracy metric comparing predicted vs actual polygon labels
Data Requirements
Prediction Data:
prediction_instance_segmentation_polygon_labels - Predicted instance labels
prediction_instance_segmentation_polygon_coordinates - Polygon coordinates
prediction_instance_segmentation_polygon_scores - Confidence scores
prediction_instance_segmentation_box_coordinates - Bounding box coordinates
Actual Data:
actual_instance_segmentation_polygon_labels - Ground truth instance labels
actual_instance_segmentation_polygon_coordinates - Ground truth polygon coordinates
actual_instance_segmentation_box_coordinates - Ground truth bounding box coordinates