Set the GOOGLE_API_KEY environment variable. Refer to Google’s ADK documentation for more details on authentication and environment variables.
Copy
Ask AI
export GOOGLE_API_KEY=[your_key_here]
Use the register function to connect your application to Arize AX.
Copy
Ask AI
from arize.otel import registertracer_provider = register( space_id="your-space-id", # in app space settings page api_key="your-api-key", # in app space settings page project_name="your-project-name", # name this to whatever you would like)# Import the automatic instrumentor from OpenInferencefrom openinference.instrumentation.google_adk import GoogleADKInstrumentor# Finish automatic instrumentationGoogleADKInstrumentor().instrument(tracer_provider=tracer_provider)
Now that you have tracing setup, all Google ADK SDK requests will be streamed to Arize AX for observability and evaluation.
Copy
Ask AI
import asynciofrom google.adk.agents import Agentfrom google.adk.runners import InMemoryRunnerfrom google.genai import typesdef get_weather(city: str) -> dict: """Retrieves the current weather report for a specified city. Args: city (str): The name of the city for which to retrieve the weather report. Returns: dict: status and result or error msg. """ if city.lower() == "new york": return { "status": "success", "report": ( "The weather in New York is sunny with a temperature of 25 degrees" " Celsius (77 degrees Fahrenheit)." ), } else: return { "status": "error", "error_message": f"Weather information for '{city}' is not available.", }agent = Agent( name="test_agent", model="gemini-2.0-flash-exp", description="Agent to answer questions using tools.", instruction="You must use the available tools to find an answer.", tools=[get_weather])async def main(): app_name = "test_instrumentation" user_id = "test_user" session_id = "test_session" runner = InMemoryRunner(agent=agent, app_name=app_name) session_service = runner.session_service await session_service.create_session( app_name=app_name, user_id=user_id, session_id=session_id ) async for event in runner.run_async( user_id=user_id, session_id=session_id, new_message=types.Content(role="user", parts=[ types.Part(text="What is the weather in New York?")] ) ): if event.is_final_response(): print(event.content.parts[0].text.strip())if __name__ == "__main__": asyncio.run(main())
When using Vertex AI Agent Engine for remote deployment, instrumentation must be configured within the remote agent module, not in the main application code.
For Agent Engine deployment, include the instrumentation packages in your requirements and set up instrumentation in your agent module:Main Application: